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Synthetic biology has been significantly shaped by modular design principles via analogies to 
electrical and computer engineering. While convenient, these parallels often break down in 
practice, and we are still largely unable to engineer sophisticated systems that behave as predicted. 
As nature has achieved robust and intricate programs without requiring strict modularity, we may 
want to revisit genetic circuit design approaches. Rather than pursuing modularity, we could aim 
for a robust and scalable design framework that embraces the uncertainty that context-dependence 
brings to engineering in a biological chassis. Systems and control theory offer a starting point, but 
a substantial conceptual leap will be needed to quantitatively predict system behavior and establish 
flexible context-aware design processes. Only by overcoming these hurdles, we will be able to 
capitalize on synthetic biology in particular and on biotechnology in general for medicine, 
environmental engineering, and energy production. 
 
Auditing the analogies to electrical and computer engineering 
 
While “synthetic biology” as coined in 1911 more so referred to synthetic chemistry than 
biology,1,2 this term now represents a multidisciplinary field of science that involves redesigning 
biological processes and organisms for useful purposes. Its roots can be traced back to 1961, when 
Jacob and Monod introduced the operon model of gene regulation,3–6 which was the core process 
used in 2000 to create the first two synthetic genetic networks.7,8 Since then, “genetic circuit” has 
been used as a synonym for genetic network, as in earlier systems biology studies.9,10 Shortly after 
the creation of these two synthetic genetic systems, some members of the engineering community 
advocated that synthetic biology adopt a similar design abstraction hierarchy as employed in 
electronic circuit design.11,12 Within such an approach, design should be performed at different 
levels of abstraction (DNA, genetic parts, modules, and systems) and should allow one to disregard 
details of lower levels when designing at any given layer. Within any given layer, elements should 
then be composed through well-characterized physical or information interfaces to allow arbitrary 
combinations of elements into systems with predictable behavior.11 Since then, these design 
principles have permeated the field as a basis for genetic circuit design.11,13–16 In fact, abstracting 
genetic components as input/output (I/O) maps, often digital and static (as opposed to analog and 
dynamic), has been highly convenient for performing stepwise and systematic composition of 
complex circuits, as demonstrated by design tools such as Cello and COMET.15,17  
 
However, for this approach to be applicable, defined genetic circuit components must be modular; 
that is, they must be fully characterizable by their I/O behavior and connectivity, wherein this 
behavior is maintained upon arbitrary composition (Figure 1, Left). By contrast, there is clear 
evidence that biological components, as defined and used today, do not satisfy this property 



(Figure 1, Right).18–45 Whereas electronic circuit components are often designed with internal 
compensation mechanisms to maintain pre-defined I/O properties independent of their context, 
today's genetic components are by no means guaranteed to be modular. Indeed, a component's 
behavior is contingent on its intracellular and extracellular context via diverse interactions, such 
as DNA supercoiling,18 chromatin state,19 positional effects,20–23 off-target interactions,24,25 
retroactivity,26,27 resource sharing,28–33 cell fitness and competition,34,35 microenvironmental 
cues,36 random mutations,37 and growth rate feedback,38,39 to name a few. Most of these 
interactions are currently not in the description of genetic elements and of their connectivity. 
Furthermore, the biochemical reactions that drive circuit functionality are intrinsically 
stochastic,40–43 I/O responses are more often analog than digital,44 and temporal dynamics make 
static I/O characterization insufficient to capture emergent system behavior.45 
 
To move the field forward, we need to balance the convenience and drawbacks of the assumptions 
implicit in a modular and hierarchical design approach. For biological engineers, these analogies 
may ultimately become an easily accessible starting point that aids early design stages. Since 
design is iterative, one could initially assume that each component achieves a well-defined 
subfunction with a fixed connectivity. For instance, one could assume that modules have strictly 
unidirectional interactions and that genetic parts, such as promoters, have the same activity 
independent of the surrounding DNA sequences. In subsequent design iterations, one could then 
model bidirectional flow of information among modules and additional physical interactions 
among parts, such as with retroactivity,26 resource loading,31 and DNA supercoiling.18 In this 
framework, retroactivity, loading, parts-sharing, and interference may even become useful 
features, as opposed to bugs to be stamped out. 
 



 
Figure 1: Auditing the analogies to electrical and computer engineering. (Left) The appeal of applying principles 
from traditional circuit engineering disciplines is in its simplicity. Use of these principles rests on assumptions inherent 
in modular and hierarchical design that simplify the design and optimization of genetic circuits. (Right) In practice, 
these assumptions often fail given the complexity of biological systems. For simplicity, many interactions among the 
factors illustrated here are only drawn indirectly via their role in modulating cell state. In this way, these factors 
become coupled and are difficult to disentangle. For instance, high transgene expression places a load on cellular 
resources, which causes endogenous gene expression to change, thereby potentially affecting growth rate 
(encapsulated here in cell state). In cases where there are multiple engineered cell types or strains in a shared culture, 
the cells in which growth rate is higher will tend to dominate the population. The dashed arrows highlight some of the 
interactions among factors that are often not accounted for in design and, depending on the application, may be 
undesirable. The set of solid arrows from “Shared cellular resources” to “Host DNA encoding endogenous genes” and 
“DNA encoding synthetic genetic circuit” indicate that cellular resources are required to produce both endogenous 
and synthetic gene products. At the same time, endogenous genes encode many cellular resources, such as the 
ribosomes, polymerase and proteosome depicted here, as illustrated by the solid arrow from “Host DNA encoding 
endogenous genes” to “Shared cellular resources.” The dashed arrow from “DNA encoding synthetic genetic circuit” 
to “Shared cellular resources” indicates that cellular resources are loaded (temporarily sequestered) by the process of 
transgene expression. Note that chromatin state is primarily in eukaryotic cells, and RBSs are mainly used in bacterial 
synthetic biology. The term “positional effects” refers to any sequence-dependence of a part’s performance, as can be 
the case for promoters and RBSs. Stochasticity includes processes that occur at low molecular counts and factors such 
as copy/integration number variation. See main text for relevant references. Abbreviations: RBSs = ribosome binding 
sites. 
 
Rising to the unique challenges of building genetic circuits 
 
The lack of strict modularity of engineered genetic components emanates, in part, from the poor 
robustness of a component's defined I/O behavior to context. In fact, lack of robustness to context 



is a major barrier to modular and scalable design because existing elements in a system change 
properties once new components are added, and these elements consequently need to be 
redesigned. This way, design complexity increases combinatorially, rather than linearly, with the 
number of components in the system, thus rendering the design process monolithic and unscalable. 
Lack of robustness also curtails the practical impact of synthetic biology: most genetic circuits 
built today usually function as intended only in tightly controlled laboratory and cellular conditions 
(in general, reproducibility of research in biological sciences and systems biology modeling is low, 
as a result of a variety of factors, including lack of information reported on the experimental setup 
or modeling workflow46–49). With this fragility, it is difficult to envision a future where engineered 
organisms will be deployed in the field, whether for environmental biosensing or as therapeutic 
agents. Our current inability to efficiently and predictably design robust circuits stems from our 
limited understanding of how the properties of genetic parts, modules, and systems vary with 
genetic context,18,50 intracellular conditions and connectivity,28–30,33,38,51 and extracellular 
environment.52,53 How can we tackle this formidable challenge? At the most basic level, we have 
two options: (a) insulating circuit components from their context so they behave as designed 
despite disturbances, or (b) evolving current modeling and design frameworks to enable prediction 
and optimization of complex interactions among modules and between a circuit and its context. 
To advance synthetic biology, we will likely need a combination of the two. 
 
 

 
Figure 2: Rising to the unique challenges of building genetic circuits. To be able to design robust genetic circuits 
reliably and predictably, we will likely need a combination of two approaches: engineering insulated genetic modules 
and developing more sophisticated modeling and design frameworks that handle biological uncertainty (e.g., in 
connectivity among parts, simple physical process behavior, and parameters) and noise. Representative questions 
corresponding to engineering insulated circuit modules are shown in the yellow rectangle on the left, and those 



corresponding to embracing uncertainty in biophysical modeling and design are shown in the pink rectangle on the 
right. Emergent system behaviors to be made robust and predictable, tools, and challenges associated with these tools 
are common to both approaches. 
 
Designing insulated genetic circuit modules Robust circuit components are advantageous as they 
can maintain a desired behavior in the presence of environmental disturbances. There are already 
examples of genetic circuits that implement negative feedback and feed-forward compensation 
mechanisms to attenuate interference from select extra-modular processes.29,30,54–64 As this work 
continues, we need to carefully consider which system properties should be robust and to which 
perturbations they should be robust. Additional challenges include the trade-offs between 
robustness to disturbances and input sensitivity, and between designing for robustness and 
maintaining a scalable design process. For instance, if we were to implement feedback 
compensation for every single module, we would quickly introduce even more resource loading 
and run out of orthogonal parts. This approach may also prevent us from exploiting additional 
inter-module interactions, thereby yielding suboptimal circuit designs. These practical challenges 
of engineering robust modules will require us to consider which nodes in a system require feedback 
compensation for ensuring robustness of emergent output properties.  We will also need to develop 
new uncertainty representations and robustness techniques to address these and other aspects of 
engineering robust genetic circuits. In fact, while classical robust control methodologies65 may be 
leveraged, these are mainly focused on exact parameterization of uncertainty, which is most likely 
not conducive for engineering biology. Therefore, new methods that tolerate large and 
unstructured uncertainty, also and especially within the controller components, will be needed. In 
addition, robustness is often only addressed for steady state or deterministic I/O behavior. 
However, it is critical that we define metrics for assessing robustness of a broader set of dynamical 
and stochastic properties, such as with respect to periodic behavior, multi-stability, probability 
distributions, and more sophisticated signal processing.  
 
Expanding the biomolecular modeling and design toolbox to handle uncertainty As many of the 
interactions among engineered modules and their context will be difficult to completely 
disentangle, we will also likely need to embrace uncertainty in the design phase with new modeling 
and design frameworks that are robust to lack of information, especially in the connectivity among 
circuit components. In the same way that Thévenin's theorem guides composition of complex 
electrical circuits under “non-ideal” conditions (without infinite input impedance or zero output 
impedance),66 we need tools that allow us to predictably compose modules despite all the 
uncertainty inherent in biological systems. With this respect, we may also draw inspiration from 
the course of natural evolution, wherein core processes are repeated and conserved in different 
contexts, but their connectivity remains fluid and context-dependent through “weak regulatory 
linkages.”67 This, too, will require novel approaches; nature has successfully “designed” complex 
and robust systems via billions of years of trial and error, whereas time is a precious and limited 
resource in research and technology. In cases where quantitative prediction of system behavior is 
required in the design process, we may be able to adapt machine learning (ML) approaches to 
reduce uncertainty in biophysical models and to facilitate system composition and prediction in a 
variety of contexts. These models could allow us to identify designs that are more likely to perform 
as intended, thereby reducing the number of circuit variants to be tested and ultimately accelerating 
the design process. However, our ability to generate strong ML models is tied to data quality: we 
often have imprecise, indirect, and sparse measurements, wherein only a subset of the system's 
state can be measured via a proxy, and at times with only population-level resolution. Oftentimes, 



the types of measurements we can make depend on the experimental setup, so we need to develop 
ML models that accommodate these inputs. Furthermore, the outputs of these models also need to 
be tailored for synthetic biology: ML models, such as neural networks, can have low 
interpretability, which curtails their utility for informing genetic circuit design. To overcome this, 
physics-informed ML, developed for other engineering problems, may serve as a starting point.68  
 
Conclusions and outlook 
 
Although conceptual analogies between synthetic biology and electrical and computer engineering 
can play a constructive role in engineering biology, a strict mapping between the fields is not 
conducive for overcoming current challenges in synthetic biology. In particular, the convenience 
of applying principles of modular and hierarchical design to engineering biology is undercut by 
the accompanying insufficient attention paid to the poor robustness to context of today's defined 
genetic components. If this trend continues, we may not reach a future where engineered cells are 
employed for myriad real-world applications, for which safety, accuracy, and reliability are 
paramount. Fundamental research is critically needed to explore novel design approaches that 
acknowledge context-dependence and achieve emergent robustness from possibly non-robust 
components. Accordingly, new mathematical formalisms for predicting, exploiting, or mitigating 
systems' connectivities will be instrumental. Addressing these gaps in our ability to engineer 
biology will yield a powerful set of tools that will allow us to move synthetic biology and 
biotechnology forward. 
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